Medela BPA-free

Moms are searching for BPA-free products.  In addition to our Breastmilk Feeding and Storage Bottles, which have always been BPA-free, all Medela products that come into contact with breastmilk are BPA-free. 

Below are some common questions that will help you determine if a bottle is BPA-free and where you can find Medela BPA-free products. 

...

plastic injection processing

料加工之注塑工艺调校知识

    注塑速度的比例控制已经被注塑机制造商广泛采用。虽然电脑控制注塑速度分段控制系统早已存在,但由于相关的资料有限,这种机器设置的优势很少得到发挥。本文将系统的说明应用多段速度注塑的优点,并概括地介绍其在消除短射、困气、缩水等制品缺陷上的用途。 ...

aluminum-diecasting-bobbin-dynamic_balance

Its bobbin casted by aluminum die casting have been passed the test of dynatic and static balance procisely.

dynamic balance machine

dynamic balance machine

Balancing Machine for Automotive Drive Shaft

1.easy&safe to operate
2.visual display
3.high-precision
4.high efficiency

Our balanced test equipment which shows rotate speed,unbalance value, phase position in English and fingures is adopted with microcomputer test System.The unbalance value are directly diplayed by the unit of gram. There are 6 supporting petters can be selected,they are visual display and have the data momery.
...

Blow molding, also known as blow forming,

Blow molding, also known as blow forming, is a manufacturing process by which hollow plastic parts are formed. In general, there are three main types of blow molding: extrusion blow molding, injection blow molding, and stretch blow molding. The blow molding process begins with melting down the plastic and forming it into a parison or preform. The parison is a tube-like piece of plastic with a hole in one end in which compressed air can pass through.

...

The strength of this area is too weak and it is hard to cool because the steel is too thin

R>28. 滑块拆的位置 (The split line of slide block or the area of slide.)
29. 此处有尖角,填充困难 (It is hard to fill this area due to the sharp feature.)
30. 此处钢材太薄,强度不足而且不容易冷却
(The strength of this area is too weak and it is hard to cool because the steel is too thin.)
...

Electrical Standoff Insulators

Electrical Standoff Insulators

Although standoff insulators perform an ancillary function within most electrical systems, they can be critical for maintaining a device’s operational capability. A standoff insulator typically supports a conductor at a distance from the surface, or substrate, to which it is attached. ThBulk molding compound,Bulk molding composite,BMC,sheet molding compound, SMCe insulator’s high electrical resistance prevents the unintentional flow of current between a conductor and surrounding objects, effectively reducing the potential for power damage and energy waste.

Standoffs are used as separators in electronic and mechanical industries. They can be produced from a variety of materials, and come in a range of dimensional categories. For an insulator, the standoff format is particularly useful, as it eliminates any direct physical contact between electrical components that may cause them to short out. To better understand if standoff insulators are necessary for a given project, it may be helpful to review electrical operations as well as the different types of insulators currently available.

 

Conduction vs. Insulation

Conductors function under the principle that a charge will move through any material in which electrons can be excited. Perpetuating the charge builds energy and creates an electrical flow through a conductive substance. An insulator is any substance lacking the physical properties to excite electrons and extend the charge—this is usually due to the “band gap,” which constitutes the difference between a material’s valence (the strength of its atomic bonds) and its conductivity (the degree to which it can carry a current).

Insulators typically have strongly bonded
valence electrons, preventing them from entering an excited state. However, if sufficient voltage is applied, the electrons will overcome their bonds and become charged, causing the insulator to become a conductor. This is usually accompanied by some form of material damage that alters the former insulator’s physical properties.

Insulating Materials

The material used to create an insulator can greatly influence its effectiveness in certain applications. Manufacturers typically produce porcelain insulators from clay, quartz, or feldspar rock. They can tolerate high voltage or electrical stress, and reliably regulate the flow of charge. In addition, porcelain has high tensile strength, corrosion resistance, and deformation resistance.

However, ceramics are susceptible to fracture due to their rigidity.
Composite materials are common alternatives to ceramic-based insulators, as they alleviate the potential for cracking. A composite, such as a fiberglass core sheathed in rubber, can provide greater physical flexibility and moisture resistance, but with lower voltage tolerance and a faster rate of wear than its ceramic counterpart.

Plastic insulators are usually made from polymer resins, such as polypropylene or polyethylene. They are highly versatile and tend to be less expensive than ceramic or composite materials. Prolonged exposure to ultraviolet light can, however, increase their frailty and chance of shattering.

Standoff Insulator Applications

A standoff insulator is mounted at a distance from the electrical component it supports, and functions essentially as a threaded spacer. The most important specifications for a standoff insulator are its electricity clearance, mechanical strength, and mounting procedure. They are most commonly used for regulating current in conductors, or in conductive components of switchgear and transformers (though the units are typically designated by insulating medium rather than arrangement).

Due to the physical separation between the insulator and the component, standoffs usually control the flow of a high level of voltage, and significantly reduce the chances of inter-component shortages. This is especially useful in powering stations or electrical devices that have high energy requirements and electrically-sensitive equipment.

In deciding whether a standoff is right for a particular application, the insulating material, conductive strength, and environmental conditions are important factors. However, the proximity and electrical resistance of the device to be supported is likely the central concern in selecting an insulator.

 
 

...

Hot runner systems on the mould

Hot runner systems on the mould

...

模具设计要点

一、设计依据
尺寸精度与其相关尺寸的正确性。
根据塑胶制品的整个产品上的具体要和功能来确定其外面质量和具体尺寸属于哪一种:
外观质量要求较高,尺寸精度要求较低的塑胶制品,如玩具;
功能性塑胶制品,尺寸要求严格;
外观与尺寸都要求很严的塑胶制品,如照相机。
脱模斜度是否合理。
脱模斜度直接关系到塑胶制品的脱模和质量,即关系到注射过程中,注射是否能顺利进行:
脱模斜度有足够;
斜度要与塑胶制品在成型的分模或分模面相适应;是否会影响外观和壁厚尺寸的精度;
...

美国的模具制造

 

中国模具业目前的高速发展,使得越来越多的相关企业将模具制造转移到中国。也使得我们经常能够遇到出口模的订单,如何按不同客户的要求完成,是我们必须面对的问题。比如美国的模具制造一直都在使用英制单位,而且还有其它很多与我们炯然不同的标准,因此在这类模具的设计之前,一定要沟通好相关的要求,否则会产生非常多的麻烦,甚至导致模具报废。这里转贴一份美资公司的相关要求,以供参考: 

MOLD ENGINEERING STANDARDS

1.0 GENERAL OVERVIEW
...

控制面板
您好,欢迎到访网站!
  查看权限
网站分类
    标签列表
      文章归档
        友情链接

        Powered By Z-BlogPHP 1.5 Zero

        Copyright Your WebSite.Some Rights Reserved.